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Amoebic cells are ubiquitous in many species and have been used as model systems to study the eukaryotic
cellular locomotion. We construct a model of amoebic cells on two-dimensional grids, which describes sensing,
cell status, and locomotion in a unified way. We show that the averaged position of simulated cells is described
by a second-order differential equation of motion and that the mechanical pushing at the initial moment boosts
the cell movement, which continues after the cell is released from the pushing. These “inertialike” features
suggest the possibility of Newtonian-type motions in chemical distributions of the signaling molecule. We
show, as an example, the possibility of rotating motion in a “centripetal” distribution. The observed inertial
motion is an emergent collective dynamics, which is controlled by diffusive and chemical processes in the cell.
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How does a cell sense the distribution of signaling mol-concentration of actin filaments in the cell, i.e., by the bal-
ecules in environment and move in response to it? The maance between the binding and removing of actin monomers
tional response of eukaryotic cells has been extensively stude and from the filament. We describe these molecular fea-
ied by using amoebic cells as model systdrhs Amoebic  tures with a simplified model defined on two-dimensional
cells can move toward the gradient of concentration ofhexagonal grids. Two-dimensional grids have also been used
chemoattractants such as cyclic adenosine mono phosphate study the cellular motion in models of morphogenesis
(CAMP) for a slime mold,Dictyostelium dicoideuni2], or 10,11,

formyl leucin methionin phenylalanin€MLP) for neutro- A grid within the cell domain is called “cellular grid,” and

phils [3,4]. Such behavioral response of cells is calledfa grid out of the cell is an “environmental grid.” If a cellular

chemotaxis. In chemotaxis an amoebic cell detects the difgi o jess than six nearest cellular grids, or equivalently, if

ference in concentration of chemoattractant between the redr ; - ; : -
X has at least one neighboring environmental grid, we call it
2&%?%?&;‘;?5;&'&5&? c()ji St;] eerr::/?rcohnarglesg ;]oasdebteegtns:r(]: hin?-a “‘membrane grid.” At each grid, the local concentration of
portant subject to be studi¢@]. Amoebic cells, however, do molecules3, A, ;, andF; are defined. Here, the concentra-
not always follow the gradient but also show a variety ofion of the chemoattractan§, is nonzero only at the envi-
different behaviors. For example, Jeenal.[7] constructed ~fonmental or membrane grids, whereas concentrations of ac-
the one-dimensional “hill” gradient in which the concentra-ivator and inhibitor, A; and I;, and the concentration of
tion initially increases but decreases from a “top” position.actins in a polymerized filamentary fornf;, are nonzero
They observed that cells starting from a bottom edge of th&nly at cellular grids. Changes in those concentrations and in
gradient passed the top and went against the gradient fortge cellular shape are simulated with a Monte Carlo-type
moment until they returned. Neutrophils and other amoebistochastic algorithm. We define several events in the simula-
cells can spontaneously move in nondefinite directions undgfon: (1) chemical kinetics(2) diffusion, (3) cellular exten-
the uniform increase in the concentration of chemicalssion, (4) cellular shape maintenance, afl sampling.
showing the behavior called “chemokinesjg]. Even with- The definition of the event of chemical kinetics is based
out chemoattractants, cells continue to move in one directioon the model of Levchenket al. [5]. At first, the event
when they are mechanically pushed forward at the initiarandomly selects a cellular grid. Here, we may use the suffix
moment[8]. These rich behaviors suggest that there is ng to specify the selected grid;, |;, andF; are updated td\,
one-to-one correspondence between the environment and th’e and FJ-’ by the following rules:

behavior, but that the cell movement depends on both the

environment and the cell status simultaneously, leading to A=A+ a§ kA, @)
the nonlinear and history-dependent response to the environ- )

ment. The purpose of this Rapid Communication is to ex- lj =1+ B — Kglj, (2)
plain the rich behaviors of cells by taking into account the

sensing, cell status, and locomotion in a unified model. We A

propose a perspective that the cell motion is described as a |:j’ =F;+ y lj (3)

collective dynamics emerging from the system of many de-
grees of freedom, which should offer language and tech-
niques to study cell behaviors. where @ and B are rates of increase in the activator and
Both sensing and locomotion mechanisms of amoebiénhibitor induced by the chemoattractant reception at the
cells have begun to be elucidated at the molecular [E3el membrane, andy is the rate of actin polymerization pro-
Cellular locomation is promoted by the dynamical change ofmoted when the ratio of activator to inhibitor exceeds a

—kiF;  (otherwise,

1539-3755/2005/71)/0109024)/$23.00 010902-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

S. . NISHIMURA AND M. SASAI PHYSICAL REVIEW E 71, 010902ZR) (2005
threshold h, k,, ks, andk; are rates of degradation. Concentration g Concentration
We assume that only the inhibitor can diffuse across cel- E 50 /i) § 0
lular grids. The event of diffusion randomly selects a cellular N 1100
. . : . 150 0
grid. If the selected grid and its nearest cellular grids are
denoted byj andl, respectively, inhibitor molecules are re- 20 Top| 300
distributed by the following rulest/ =1;-DI;, 1/ =1;+DI;/n, 30 ‘ -400
whereD is a constant ana is the number of the nearest 00 100 300 S0~ 360 200 600

cellular grids toj. D is smaller than one by definition. (a) X (um) (b) X (pum)
When actin filaments accumulate to exceed a certain.tiston
threshold, the cellular domain extends outward. The event of
“cellular extension” randomly selects a membrane grid;If
is larger than a thresholdy, at the selected grigl, the rule
generates a new cellular griceferred to ak) by changing
the environmental grid adjacent to tfté grid into a cellular 50
grid. If two or more adjacent grids are environmental, then 600 200 200 600 100
one of them is randomly selected to be cellular. Actin fila- (©) X (um) @ X (um)
ments are equally divided into grigsandk ast’ =F;/2 and
The surface tension should suppress the cellular exten
sion. Here, we use the term “volume” as the number of cel-
lular grids. The surface tension is modeled by the tendency .
for the cellular volume to have an equilibrium value and by 0 40 & 120 160 vum D B4
the tendency for the cellular membrane to be as small ad®) X (um) ()
Enoesrill?rleelh;)rhgerigvgrq:j o;;ggi?r;r?;ﬁirn:ﬁgtgﬂgn;e r‘cé?rl]eo(;’/t: ga FIG. 1. (a)—(e) Trajectories of cells. The trajectories in each

f th o b - tal lul id igure are the positions of cells obtained by repeated independent
rom the cell to become environmental or a new Cellular g, ations with the same initial conditions, and with the same

IS a‘?'ded at the adjacent posmog to t2he selected one by eSBérameters but with different random number realizati@n.The
mating a cost functiorE=(V-Vg)“+cL®, whereV andL are  yaiectories in a linear gradient. The direction of the gradient is
the cellular volume and length of the membrane, respecqownward(20 031 steps in total (b) A hill gradient. A dashed line
tively, andV, andc are constants. Because the cellular sur-indicates the top of the gradient. The ascent slope to the top has the
face is elastically maintained with various skeleton strucsame gradient as the linear gradient ifl8 791 steps (c) A cliff
tures, we adopted the form & having a term proportional gradient. The concentration increases downward but suddenly drops
to L? instead ofl. If E’ denotes the cost function after either at a line(13 796 steps (d) The uniform concentratior=1. Cells
a cellular grid is removed or added, we “undo” the event ofare pushed at the initial positiofinitial pushing: 1000 steps, 1780
removing and/or adding with the probabilitf,=max1 steps in total (e) A trajectory in a “centripetal” gradient. The cell
_e(E’—E/T),O]. If the event of removing is selected, local con- starts from the poin(O,Q) and the centgr is dﬁo,q. The cgl! is
centrations ofA, I, andF in the grid are added into one of its push_ed .downward during a shor_t period of starting .‘Q‘tém'al
nearest cellular grids, which is randomly selected if there ar@USning: 1000 steps, 9170 steps in thte) The distribution of the
. d o inhibitor in a cell (1199th step in the linear gradientThe cell

two or more nearest grids. Note that if the cell is discon- ) e

. . ; . : spreads on they plane. The vertical axis indicates the local con-
nected into multiple domains by removing a grid, the remov- ; I
LT - . centration of the inhibitor.
ing is canceled and another grid is selected. This procedure
prevents the cell from breaking into pieces. where &t is the time length of one step. By setting

The event of sampling does not alter the system but the0.3 s, P,=0.899, P;=0.0003, andD=0.45, we haveD
cellular shape, position, and concentrations of molecules are:0.8 um?/s, which is of the same order of the diffusion
monitored. “One step” of the cellular dynamics is countedconstant of proteins in a bacterium. Other parameters are set
when sampling is called once. to prevent the actin filament from spreading too broadly

We also give a “master” rule that randomly selects one ofalong the membrane but to be heterogeneously distributed in
the above five events to be executed. The probabilities teesponse to the anisotropic environmental stinf@]: «
select one of those five events aR with i=1-5 and =1.0, 8=0.1, k,=0.9, ks=0.02, y=4.0, k;=0.99, h=10.0,
=2 P;=1. The master rule is called several million times in F,,=1.0, P;=0.0419, P;=0.0299, P,=0.0299,c=1.2, and
one trajectory of the cellular locomotion. T=100.

We assume that the length of a grid is approximately First, we investigate the cell behavior in the two-
1.0 um. Correspondingly to the typical size of a neutrophil, dimensionalxy plane under the linear gradier§=ay+b,
several 10um, we put the initial shape of the cell to be a with a=-1 andb=30. Figure 1a) shows trajectories in this
circle with a 30-grid diameter, and the equilibrium volume islinear gradient, each of which is generated by using a differ-
set to beVy=900. We assume that the event of diffusion isent random number seed. All the trajectories are simulated
more frequent than the other chemical or cellular events awith the same set of parameters and started from the same
P,>P,=P3;~P,>Ps. The effective diffusion constant of initial point, (0,0). Although the chemical gradient here is as
the inhibitor is Deg=(D/6)(1.0 um)?/ 8t X (P,/Ps)/Vy,  small as|dS/dy|/S~0.01-0.001.m, cells go toward the

010902-2



RAPID COMMUNICATIONS

INERTIA OF AMOEBIC CELL LOCOMOTION AS AN ... PHYSICAL REVIEW E 71, 010902R) (2005
gradient as was observed[i2]. They show a large diffusive S
fluctuation along thex direction. The averaged chemotactic g 80 .q"
velocity along they direction is about 0.03 grid/step, which = [ 1
roughly coincides with the observed speed of a neutrophil, § “1°°[ Py T
0.1 um/s[4]. b=

We next investigate cellular behaviors in more complex & 120 7
gradients: hill and cliff gradients. In the hill gradient, the cell 2
moves beyond the top position until it returfiSig. 1(b)], £ -l4oF ° o ° 7
while in the cliff gradient, the cell cannot go beyond the drop &
as if there exits a repulsive walFig. 1(c)], showing the ‘3;5 -160F- o .
same behaviors as were observed by Jetal. [7]. In our L I
simulations the scale of spatial variance, 260 from bot- E -180F -
tom to top or to the drop, is almost identical to that in the ™
experimental setup iq7]. Cells. p.roceedgd(l.2910.58. 200 e e —
X 107 um beyond the top of the hill in our simulation, which P,
roughly reproduces the experimental result on the distance
that cells moved beyond the toff).8+0.4 X 10? um. Here, FIG. 2. The farthest reaching position of ten trials of cellular
the latter was estimated from six cellular trajectories showrocomotion in a hill gradient is plotted for each value B, the
in [7]. probability of the diffusion event to be selected. Rs becomes

The cell shows behavioral responses not only to thdarge, D increases andP; with i+ 2 decreases. Trajectories start
chemical gradient but also to the mechanical stimuli. Figfrom y=0. The top of the gradient is §=-80. WhenP, is large,
1(d) shows trajectories in a uniform chemical concentration the farthest reaching position comes close-80, showing the loss
S=1. Cells are pushed initially in the simulation by introduc- of ability to go beyond the top.
ing an additional “pushing” event defined as follows: first a

membrane grig is randomly selected. If the vertical position inhibitor self-consistently. An example of the self-consistent
y of the jth grid is larger than the threshojd, then the grid  inhibitor distribution is shown in Fig. (). In this example,
is removed. Local concentrations Af, |;, andF; inthe grid  the gradient |dl/dy|/I ~0.1/um is much larger than
are added into one of its nearest cellular grids randomly selyS/gy|/S~0.01-0.0014m. Note that since the activator
lected. This event has an effect as if to push the cell by &oes not diffuse, it is distributed into a narrow area around
plank.yy is set to 7.5, about a half of the cellular radius. Thisthe membrane. The cell tends to keep moving as if it had
pushing event is selected by the master rule with the probinertia as far as such a pattern of the inhibitor is kept, so that
ability Ps=0.23 and other events are suppressed with théhe mass of the inertial motion should be correlated to the
decreased probabilities d?j(1-Pg) for i=1-5. After the |ifetime of the inhibitor distribution pattern. We may expect
1000th stepPs is set to 0 and the cell is released to movethat the faster the inhibitor diffuses, the shorter the lifetime
without being forced. Even after releasing, the cell proceedsf the pattern is. Becaus®.i is proportional toP,, the larger
with keeping its initial motional direction, reproducing the P, should yield the smaller inertial effect in the model. The
experimental observation {8]. anticorrelation betwee®, and inertia is verified in the re-
The above results in the hill gradient or with the pushingsults shown in Fig. 2, where cells move in the hill gradient
at the initial phase imply that cells behave as if they hadwhose top is ay=-80. For each value d®,, ten trajectories
“inertia” of motion. If this is the case, we may expect that were simulated with the starting pointyat 0 and the farthest
cells exhibit various Newtonian type motions. The cell in areaching position at which the trajectory reversed its direc-
centripetal gradient, for example, should rotate around thé&on was monitored. The point is plotted at varidg sug-
center if its initial velocity has a component vertical to the gesting that the mass decrease®a@ncreases.
radial direction, i.e., nonzero “angular momentum.” We as- More quantitative analysis is possible by comparing the
sume a fixed den5|ty distribution of chemoattractanlsja\s simulated data with the equation of motion,
=S-d|rj=Fo|% wheref] is a position,fy is a center, and
and S, are constants. We ust=1.0 andS,=4x 10*. Indeed, d2 dr
the cell in this gradient does not direct to the center imme- Mg~ =VSS- kd (4)
diately but keeps rotating for a certain angle width. There is
a large fluctuation in this persistent angle of rotation dependwherer is the center position of cel§ indicates the field of
ing on the random number seed used in the simulation. Asoncentration of chemoattractant, amdandk are effective
exemplified in Fig. 1e), we can often find trajectories that mass and damping rate. We emphasize that the effective
rotate for more thanr. mass here is completely different form the real mass but it
This inertia is a collective property emerging from the represents a memory effect in the cellular motion. These
originally overdamped dynamics. In the cellular locomotionmass and damping rates should be determined by the param-
the cell extracts the rear and extends the front at the samgters of intracellular molecular processes. By substituBng
time, which increases the inhibitor density at the rear and=ay+b with a=1 andb=30, solutions of Eq(4) roughly fit
decreases it at the front. Thus generated inhomogeneity ithe time evolution of the averaged position of ensemble of
the inhibitor distribution further promotes the forwarding simulated cells in the linear gradient. Figure 3 shows that the
movement of the cell and stabilizes the distribution of theaveraged positions of cells are well fitted by solutions of Eqg.
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30 increase of the concentration gives rise to “adaptation,” the
= inert response of cell2].
g 20 z In this Rapid Communication we introduced a model of
3 3. amoebic cells, which describes sensing, cell status, and loco-
™ 10 = motion in a unified way. The simulated cellular trajectories in

the hill gradient or those after the mechanical pushing
0 0 showed that the cell locomotion has inertialike characteris-
0 100 200 300 400 500 0 100 200 300 400 500 tics. The averaged motion in the linear gradient is described
(a) Time Steps (0.3s)  (b) Time Steps (0.3s) by a second-order differential equation of motion. These ob-
30 servations, a la Galileo, suggest that Newtonian-type motions
are possible. Indeed, the rotational motion is possible in the
20 simulation in the centripetal chemical distribution, and its

experimental verification should be an interesting subject to
be pursued.

10 It would be also interesting to analyze not only the aver-

aged behavior of the ensemble of cells but also fluctuations
in the individual cells. Each cell shows the diffusive fluctu-

0 100 200 300 400 500 ating motion around the average course described by4q.

© Time Steps (0.3s) of motion. Statistics of these fluctuations is yet to be eluci-

dated, raising questions on the statistical mechanics of cellu-
lar movements. Another statistical physical question is how
ffﬁe effective mass and the damping rate in the equation of

deviation, respectively. In each figure the average was taken ov otion are explained from chemical and diffusive param-

ten independent trajectories starting from the same initial conditiorPters of intracellular molecular Processes. In the _pres_ent
but with different random number seeds. Solid curves indicate so?’Ork mass was shown to be anticorrelated to the diffusion

lutions of equation 12=1/(y+30)—0.25/. (a) The averaged initial ~constant of the inhibitor. Such dependence of locomotion on
velocity is small.(b) Cells are initially pushed forward to make the chemical and diffusive mechanisms might be used by cells as
averaged initial velocity positive(c) Cells are initially pushed ~Mechanisms to control their behavior. By exploiting the in-
backward to make the averaged initial velocity negative. ertial motion, an amoebic cell would avoid from being

. o ] trapped into local maxima of concentration or it might turn
(4) at least during the short-time interval. Three subfiguresground on its enemies or foods to catch them. It remains for
correspond to three different initial positions and velocitiesy f,ture work to elucidate whether the inertial motion is ad-

and are fitted by using the same parameter valnesd25 antageous to cells in their physiological conditions.
andk=0.25 in Eq.(4). Notice that force in Eq(4) is VS/S

instead ofVS. Better fitting ofVS/SthanVSto the simulated This work was supported by the ACT-JST project of the
results is consistent with the experimental observation thalapan Science and Technology Corporation and by a Grant-
the chemotaxis is not driven by the absolute amplitude irin-Aid for the 21st Century COE for Frontiers of Computa-
concentration of chemicals but by its gradient: the uniformtional Science.

FIG. 3. Solutions of the equation of motion are compared with
the simulated data. The crosses and bars indicate the averaged
sition of cells and their error bars are estimated from the standa
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