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Amoebic cells are ubiquitous in many species and have been used as model systems to study the eukaryotic
cellular locomotion. We construct a model of amoebic cells on two-dimensional grids, which describes sensing,
cell status, and locomotion in a unified way. We show that the averaged position of simulated cells is described
by a second-order differential equation of motion and that the mechanical pushing at the initial moment boosts
the cell movement, which continues after the cell is released from the pushing. These “inertialike” features
suggest the possibility of Newtonian-type motions in chemical distributions of the signaling molecule. We
show, as an example, the possibility of rotating motion in a “centripetal” distribution. The observed inertial
motion is an emergent collective dynamics, which is controlled by diffusive and chemical processes in the cell.
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How does a cell sense the distribution of signaling mol-
ecules in environment and move in response to it? The mo-
tional response of eukaryotic cells has been extensively stud-
ied by using amoebic cells as model systemsf1g. Amoebic
cells can move toward the gradient of concentration of
chemoattractants such as cyclic adenosine mono phosphate
scAMPd for a slime mold,Dictyostelium dicoideumf2g, or
formyl leucin methionin phenylalaninesfMLPd for neutro-
phils f3,4g. Such behavioral response of cells is called
chemotaxis. In chemotaxis an amoebic cell detects the dif-
ference in concentration of chemoattractant between the rear
and front of the cellf5g, and the mechanism to detect such a
small difference in the noisy environment has been an im-
portant subject to be studiedf6g. Amoebic cells, however, do
not always follow the gradient but also show a variety of
different behaviors. For example, Jeonet al. f7g constructed
the one-dimensional “hill” gradient in which the concentra-
tion initially increases but decreases from a “top” position.
They observed that cells starting from a bottom edge of the
gradient passed the top and went against the gradient for a
moment until they returned. Neutrophils and other amoebic
cells can spontaneously move in nondefinite directions under
the uniform increase in the concentration of chemicals,
showing the behavior called “chemokinesis”f4g. Even with-
out chemoattractants, cells continue to move in one direction
when they are mechanically pushed forward at the initial
moment f8g. These rich behaviors suggest that there is no
one-to-one correspondence between the environment and the
behavior, but that the cell movement depends on both the
environment and the cell status simultaneously, leading to
the nonlinear and history-dependent response to the environ-
ment. The purpose of this Rapid Communication is to ex-
plain the rich behaviors of cells by taking into account the
sensing, cell status, and locomotion in a unified model. We
propose a perspective that the cell motion is described as a
collective dynamics emerging from the system of many de-
grees of freedom, which should offer language and tech-
niques to study cell behaviors.

Both sensing and locomotion mechanisms of amoebic
cells have begun to be elucidated at the molecular levelf9g.
Cellular locomotion is promoted by the dynamical change of

concentration of actin filaments in the cell, i.e., by the bal-
ance between the binding and removing of actin monomers
to and from the filament. We describe these molecular fea-
tures with a simplified model defined on two-dimensional
hexagonal grids. Two-dimensional grids have also been used
to study the cellular motion in models of morphogenesis
f10,11g.

A grid within the cell domain is called “cellular grid,” and
a grid out of the cell is an “environmental grid.” If a cellular
grid has less than six nearest cellular grids, or equivalently, if
it has at least one neighboring environmental grid, we call it
a “membrane grid.” At each grid, the local concentration of
molecules,Sj, Aj, I j, andFj are defined. Here, the concentra-
tion of the chemoattractant,Sj, is nonzero only at the envi-
ronmental or membrane grids, whereas concentrations of ac-
tivator and inhibitor,Aj and I j, and the concentration of
actins in a polymerized filamentary form,Fj, are nonzero
only at cellular grids. Changes in those concentrations and in
the cellular shape are simulated with a Monte Carlo–type
stochastic algorithm. We define several events in the simula-
tion: s1d chemical kinetics,s2d diffusion, s3d cellular exten-
sion, s4d cellular shape maintenance, ands5d sampling.

The definition of the event of chemical kinetics is based
on the model of Levchenkoet al. f5g. At first, the event
randomly selects a cellular grid. Here, we may use the suffix
j to specify the selected grid.Aj, I j, andFj are updated toAj8,
I j8, andFj8 by the following rules:

Aj8 = Aj + aSj − kaAj , s1d

I j8 = I j + bSj − kbI j , s2d

Fj8 = Fj + 5g − kfFj SAj

I j
. hD

− kfFj sotherwised,

s3d

where a and b are rates of increase in the activator and
inhibitor induced by the chemoattractant reception at the
membrane, andg is the rate of actin polymerization pro-
moted when the ratio of activator to inhibitor exceeds a
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threshold,h, ka, kb, andkf are rates of degradation.
We assume that only the inhibitor can diffuse across cel-

lular grids. The event of diffusion randomly selects a cellular
grid. If the selected grid and its nearest cellular grids are
denoted byj and l, respectively, inhibitor molecules are re-
distributed by the following rules:I j8= I j −DI j, I l8= I l +DI j /n,
where D is a constant andn is the number of the nearest
cellular grids toj . D is smaller than one by definition.

When actin filaments accumulate to exceed a certain
threshold, the cellular domain extends outward. The event of
“cellular extension” randomly selects a membrane grid. IfFj
is larger than a thresholdFth at the selected gridj , the rule
generates a new cellular gridsreferred to askd by changing
the environmental grid adjacent to thej th grid into a cellular
grid. If two or more adjacent grids are environmental, then
one of them is randomly selected to be cellular. Actin fila-
ments are equally divided into gridsj andk asFj8=Fj /2 and
Fk8=Fj /2.

The surface tension should suppress the cellular exten-
sion. Here, we use the term “volume” as the number of cel-
lular grids. The surface tension is modeled by the tendency
for the cellular volume to have an equilibrium value and by
the tendency for the cellular membrane to be as small as
possible. The event of cellular shape maintenance selects a
membrane grid and decides whether the grid is removed
from the cell to become environmental or a new cellular grid
is added at the adjacent position to the selected one by esti-
mating a cost function,E=sV−V0d2+cL2, whereV andL are
the cellular volume and length of the membrane, respec-
tively, andV0 andc are constants. Because the cellular sur-
face is elastically maintained with various skeleton struc-
tures, we adopted the form ofE having a term proportional
to L2 instead ofL. If E8 denotes the cost function after either
a cellular grid is removed or added, we “undo” the event of
removing and/or adding with the probability,Pe=maxf1
−esE8−E/Td ,0g. If the event of removing is selected, local con-
centrations ofA, I, andF in the grid are added into one of its
nearest cellular grids, which is randomly selected if there are
two or more nearest grids. Note that if the cell is discon-
nected into multiple domains by removing a grid, the remov-
ing is canceled and another grid is selected. This procedure
prevents the cell from breaking into pieces.

The event of sampling does not alter the system but the
cellular shape, position, and concentrations of molecules are
monitored. “One step” of the cellular dynamics is counted
when sampling is called once.

We also give a “master” rule that randomly selects one of
the above five events to be executed. The probabilities to
select one of those five events arePi with i =1–5 and
oi=1

5 Pi =1. The master rule is called several million times in
one trajectory of the cellular locomotion.

We assume that the length of a grid is approximately
1.0 mm. Correspondingly to the typical size of a neutrophil,
several 10mm, we put the initial shape of the cell to be a
circle with a 30-grid diameter, and the equilibrium volume is
set to beV0=900. We assume that the event of diffusion is
more frequent than the other chemical or cellular events as
P2@ P1< P3< P4@ P5. The effective diffusion constant of
the inhibitor is Deff;sD /6ds1.0 mmd2/dt3 sP2/P5d /V0,

where dt is the time length of one step. By settingdt
=0.3 s, P2=0.899, P5=0.0003, andD=0.45, we haveDeff
<0.8 mm2/s, which is of the same order of the diffusion
constant of proteins in a bacterium. Other parameters are set
to prevent the actin filament from spreading too broadly
along the membrane but to be heterogeneously distributed in
response to the anisotropic environmental stimulif2g: a
=1.0, b=0.1, ka=0.9, kb=0.02, g=4.0, kf =0.99, h=10.0,
Fth=1.0, P1=0.0419, P3=0.0299, P4=0.0299, c=1.2, and
T=100.

First, we investigate the cell behavior in the two-
dimensionalxy plane under the linear gradient,Sj =ay+b,
with a=−1 andb=30. Figure 1sad shows trajectories in this
linear gradient, each of which is generated by using a differ-
ent random number seed. All the trajectories are simulated
with the same set of parameters and started from the same
initial point, s0,0d. Although the chemical gradient here is as
small as u]S/]yu /S,0.01–0.001/mm, cells go toward the

FIG. 1. sad–sed Trajectories of cells. The trajectories in each
figure are the positions of cells obtained by repeated independent
simulations with the same initial conditions, and with the same
parameters but with different random number realization.sad The
trajectories in a linear gradient. The direction of the gradient is
downwards20 031 steps in totald. sbd A hill gradient. A dashed line
indicates the top of the gradient. The ascent slope to the top has the
same gradient as the linear gradient in as13 791 stepsd. scd A cliff
gradient. The concentration increases downward but suddenly drops
at a lines13 796 stepsd. sdd The uniform concentration,S=1. Cells
are pushed at the initial position.sInitial pushing: 1000 steps, 1780
steps in totald. sed A trajectory in a “centripetal” gradient. The cell
starts from the points0,0d and the center is ats70,0d. The cell is
pushed downward during a short period of starting steps.sInitial
pushing: 1000 steps, 9170 steps in totald. sfd The distribution of the
inhibitor in a cell s1199th step in the linear gradientd. The cell
spreads on thexy plane. The vertical axis indicates the local con-
centration of the inhibitor.
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gradient as was observed inf2g. They show a large diffusive
fluctuation along thex direction. The averaged chemotactic
velocity along they direction is about 0.03 grid/step, which
roughly coincides with the observed speed of a neutrophil,
0.1 mm/s f4g.

We next investigate cellular behaviors in more complex
gradients: hill and cliff gradients. In the hill gradient, the cell
moves beyond the top position until it returnsfFig. 1sbdg,
while in the cliff gradient, the cell cannot go beyond the drop
as if there exits a repulsive wallfFig. 1scdg, showing the
same behaviors as were observed by Jeonet al. f7g. In our
simulations the scale of spatial variance, 250mm from bot-
tom to top or to the drop, is almost identical to that in the
experimental setup inf7g. Cells proceededs1.29±0.58d
3102 mm beyond the top of the hill in our simulation, which
roughly reproduces the experimental result on the distance
that cells moved beyond the top,s0.8±0.4d3102 mm. Here,
the latter was estimated from six cellular trajectories shown
in f7g.

The cell shows behavioral responses not only to the
chemical gradient but also to the mechanical stimuli. Fig.
1sdd shows trajectories in a uniform chemical concentration,
S=1. Cells are pushed initially in the simulation by introduc-
ing an additional “pushing” event defined as follows: first a
membrane gridj is randomly selected. If the vertical position
y of the j th grid is larger than the thresholdy0, then the grid
is removed. Local concentrations ofAj, I j, andFj in the grid
are added into one of its nearest cellular grids randomly se-
lected. This event has an effect as if to push the cell by a
plank.y0 is set to 7.5, about a half of the cellular radius. This
pushing event is selected by the master rule with the prob-
ability P6=0.23 and other events are suppressed with the
decreased probabilities ofPis1–P6d for i =1–5. After the
1000th step,P6 is set to 0 and the cell is released to move
without being forced. Even after releasing, the cell proceeds
with keeping its initial motional direction, reproducing the
experimental observation inf8g.

The above results in the hill gradient or with the pushing
at the initial phase imply that cells behave as if they had
“inertia” of motion. If this is the case, we may expect that
cells exhibit various Newtonian type motions. The cell in a
centripetal gradient, for example, should rotate around the
center if its initial velocity has a component vertical to the
radial direction, i.e., nonzero “angular momentum.” We as-
sume a fixed density distribution of chemoattractant asSj
=S0−durW j −rW0u2, whererW j is a position,rW0 is a center, andd
andS0 are constants. We used=1.0 andS0=43104. Indeed,
the cell in this gradient does not direct to the center imme-
diately but keeps rotating for a certain angle width. There is
a large fluctuation in this persistent angle of rotation depend-
ing on the random number seed used in the simulation. As
exemplified in Fig. 1sed, we can often find trajectories that
rotate for more thanp.

This inertia is a collective property emerging from the
originally overdamped dynamics. In the cellular locomotion
the cell extracts the rear and extends the front at the same
time, which increases the inhibitor density at the rear and
decreases it at the front. Thus generated inhomogeneity in
the inhibitor distribution further promotes the forwarding
movement of the cell and stabilizes the distribution of the

inhibitor self-consistently. An example of the self-consistent
inhibitor distribution is shown in Fig. 1sfd. In this example,
the gradient u]I /]yu / I ,0.1/mm is much larger than
u]S/]yu /S,0.01–0.001/mm. Note that since the activator
does not diffuse, it is distributed into a narrow area around
the membrane. The cell tends to keep moving as if it had
inertia as far as such a pattern of the inhibitor is kept, so that
the mass of the inertial motion should be correlated to the
lifetime of the inhibitor distribution pattern. We may expect
that the faster the inhibitor diffuses, the shorter the lifetime
of the pattern is. BecauseDeff is proportional toP2, the larger
P2 should yield the smaller inertial effect in the model. The
anticorrelation betweenP2 and inertia is verified in the re-
sults shown in Fig. 2, where cells move in the hill gradient
whose top is aty=−80. For each value ofP2, ten trajectories
were simulated with the starting point aty=0 and the farthest
reaching position at which the trajectory reversed its direc-
tion was monitored. The point is plotted at variousP2, sug-
gesting that the mass decreases asP2 increases.

More quantitative analysis is possible by comparing the
simulated data with the equation of motion,

m
d2rW

dt2
= ¹ S/S− k

drW

dt
, s4d

whererW is the center position of cell,S indicates the field of
concentration of chemoattractant, andm andk are effective
mass and damping rate. We emphasize that the effective
mass here is completely different form the real mass but it
represents a memory effect in the cellular motion. These
mass and damping rates should be determined by the param-
eters of intracellular molecular processes. By substitutingS
=ay+b with a=1 andb=30, solutions of Eq.s4d roughly fit
the time evolution of the averaged position of ensemble of
simulated cells in the linear gradient. Figure 3 shows that the
averaged positions of cells are well fitted by solutions of Eq.

FIG. 2. The farthest reaching position of ten trials of cellular
locomotion in a hill gradient is plotted for each value ofP2, the
probability of the diffusion event to be selected. AsP2 becomes
large,Deff increases andPi with i Þ2 decreases. Trajectories start
from y=0. The top of the gradient is aty=−80. WhenP2 is large,
the farthest reaching position comes close to280, showing the loss
of ability to go beyond the top.
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s4d at least during the short-time interval. Three subfigures
correspond to three different initial positions and velocities
and are fitted by using the same parameter valuesm=125
andk=0.25 in Eq.s4d. Notice that force in Eq.s4d is ¹S/S
instead of¹S. Better fitting of¹S/S than¹S to the simulated
results is consistent with the experimental observation that
the chemotaxis is not driven by the absolute amplitude in
concentration of chemicals but by its gradient: the uniform

increase of the concentration gives rise to “adaptation,” the
inert response of cellsf2g.

In this Rapid Communication we introduced a model of
amoebic cells, which describes sensing, cell status, and loco-
motion in a unified way. The simulated cellular trajectories in
the hill gradient or those after the mechanical pushing
showed that the cell locomotion has inertialike characteris-
tics. The averaged motion in the linear gradient is described
by a second-order differential equation of motion. These ob-
servations, à la Galileo, suggest that Newtonian-type motions
are possible. Indeed, the rotational motion is possible in the
simulation in the centripetal chemical distribution, and its
experimental verification should be an interesting subject to
be pursued.

It would be also interesting to analyze not only the aver-
aged behavior of the ensemble of cells but also fluctuations
in the individual cells. Each cell shows the diffusive fluctu-
ating motion around the average course described by Eq.s4d
of motion. Statistics of these fluctuations is yet to be eluci-
dated, raising questions on the statistical mechanics of cellu-
lar movements. Another statistical physical question is how
the effective mass and the damping rate in the equation of
motion are explained from chemical and diffusive param-
eters of intracellular molecular processes. In the present
work mass was shown to be anticorrelated to the diffusion
constant of the inhibitor. Such dependence of locomotion on
chemical and diffusive mechanisms might be used by cells as
mechanisms to control their behavior. By exploiting the in-
ertial motion, an amoebic cell would avoid from being
trapped into local maxima of concentration or it might turn
around on its enemies or foods to catch them. It remains for
a future work to elucidate whether the inertial motion is ad-
vantageous to cells in their physiological conditions.
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FIG. 3. Solutions of the equation of motion are compared with
the simulated data. The crosses and bars indicate the averaged po-
sition of cells and their error bars are estimated from the standard
deviation, respectively. In each figure the average was taken over
ten independent trajectories starting from the same initial condition
but with different random number seeds. Solid curves indicate so-
lutions of equation 125ÿ=1/sy+30d−0.25ẏ. sad The averaged initial
velocity is small.sbd Cells are initially pushed forward to make the
averaged initial velocity positive.scd Cells are initially pushed
backward to make the averaged initial velocity negative.

S. I. NISHIMURA AND M. SASAI PHYSICAL REVIEW E71, 010902sRd s2005d

RAPID COMMUNICATIONS

010902-4


